On an equality and four inequalities for generalized inverses of Hermitian matrices

نویسندگان

  • Yonge Tian
  • YONGGE TIAN
چکیده

A Hermitian matrix X is called a g-inverse of a Hermitian matrix A, denoted by A, if it satisfies AXA = A. In this paper, a group of explicit formulas are established for calculating the global maximum and minimum ranks and inertias of the difference A − PNP , where both A and N are Hermitian g-inverses of two Hermitian matrices A and N , respectively. As a consequence, necessary and sufficient conditions are derived for the matrix equality A = PNP ∗ to hold, and the four matrix inequalities A > (≥, <, ≤)PNP ∗ in the Löwner partial ordering to hold, respectively. In addition, necessary and sufficient conditions are established for the Hermitian matrix equality A = PNP ∗ to hold, and the four Hermitian matrix inequalities A > (≥, < , ≤)PNP ∗ to hold, respectively, where (·) denotes the Moore-Penrose inverse of a matrix. As applications, identifying conditions are given for the additive decomposition of a Hermitian g-inverse C = A + B (parallel sum of two Hermitian matrices) to hold, as well as the four matrix inequalities C > (≥, <, ≤)A + B in the Löwner partial ordering to hold, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela on an Equality and Four Inequalities for Generalized Inverses of Hermitian Matrices

A Hermitian matrix X is called a g-inverse of a Hermitian matrix A, denoted by A, if it satisfies AXA = A. In this paper, a group of explicit formulas are established for calculating the global maximum and minimum ranks and inertias of the difference A − PNP , where both A and N are Hermitian g-inverses of two Hermitian matrices A and N , respectively. As a consequence, necessary and sufficient...

متن کامل

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

Inequalities and Equalities for the Cartesian Decomposition of Complex Matrices

Let A and B be Hermitian matrices and let C = A+ iB. Inequalities and equalities for the eigenvalues, singular values of the matrices A, B, and C are discussed. Known results on inequalities are surveyed, new results on equality cases are proved, and open problems are mentioned.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017